Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Antiviral Res ; 212: 105571, 2023 04.
Article in English | MEDLINE | ID: covidwho-2263398

ABSTRACT

Development of potent and broad-spectrum antivirals against SARS-CoV-2 remains one of top priorities, especially in the case of that current vaccines cannot effectively prevent viral transmission. We previously generated a group of fusion-inhibitory lipopeptides, with one formulation being evaluated under clinical trials. In this study, we dedicated to characterize the extended N-terminal motif (residues 1161-1168) of the so-called spike (S) heptad repeat 2 (HR2) region. Alanine scanning analysis of this motif verified its critical roles in S protein-mediated cell-cell fusion. Using a panel of HR2 peptides with the N-terminal extensions, we identified a peptide termed P40, which contained four extended N-terminal residues (VDLG) and exhibited improved binding and antiviral activities, whereas the peptides with further extensions had no such effects. Then, we developed a new lipopeptide P40-LP by modifying P40 with cholesterol, which exhibited dramatically increased activities in inhibiting SARS-CoV-2 variants including divergent Omicron sublineages. Moreover, P40-LP displayed a synergistic effect with IPB24 lipopeptide that was designed containing the C-terminally extended residues, and it could effectively inhibit other human coronaviruses, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Taken together, our results have provided valuable insights for understanding the structure-function relationship of SARS-CoV-2 fusion protein and offered novel antiviral strategies to fight against the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/pharmacology , Lipopeptides/pharmacology , Anti-Retroviral Agents
2.
Antiviral Res ; 211: 105541, 2023 03.
Article in English | MEDLINE | ID: covidwho-2176314

ABSTRACT

LCB1 is a computationally designed 56-mer miniprotein targeting the spike (S) receptor-binding motif of SARS-CoV- 2 with high potent activity (Science, 2020; Cell host microbe, 2021); however, recent studies have demonstrated that emerging SARS-CoV-2 variants are highly resistant to LCB1's inhibition. In this study, we first identified a truncated peptide termed LCB1v8, which maintained the high antiviral potency. Then, a group of lipopeptides were generated by modifying LCB1v8 with diverse lipids, and of two lipopeptides, the C-terminally stearicacid-conjugtaed LCB1v17 and cholesterol-conjugated LCB1v18, were highly effective in inhibiting both S protein-pseudovirus and authentic SARS-CoV-2 infections. We further showed that LCB1-based inhibitors had similar α-helicity and thermostability in structure and bound to the target-mimic RBD protein with high affinity, and the lipopeptides exhibited greatly enhanced binding with the viral and cellular membranes, improved inhibitory activities against emerging SARS-CoV-2 variants. Moreover, LCB1v18 was validated with high preventive and therapeutic efficacies in K18-hACE2 transgenic mice against lethal SARS-CoV-2 challenge. In conclusion, our studies have provided important information for understanding the structure and activity relationship (SAR) of LCB1 inhibitor and would guide the future development of novel antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , SARS-CoV-2/metabolism , Lipopeptides/pharmacology , Antiviral Agents/pharmacology , Spike Glycoprotein, Coronavirus/metabolism
3.
Front Microbiol ; 13: 1022006, 2022.
Article in English | MEDLINE | ID: covidwho-2089867

ABSTRACT

LCB1 is a 56-mer miniprotein computationally designed to target the spike (S) receptor-binding motif of SARS-CoV-2 with potent in vitro and in vivo inhibitory activities (Cao et al., 2020; Case et al., 2021). However, the rapid emergence and epidemic of viral variants have greatly impacted the effectiveness of S protein-targeting vaccines and antivirals. In this study, we chemically synthesized a peptide-based LCB1 inhibitor and characterized the resistance profile and underlying mechanism of SARS-CoV-2 variants. Among five variants of concern (VOCs), we found that pseudoviruses of Beta, Gamma, and Omicron were highly resistant to the LCB1 inhibition, whereas the pseudoviruses of Alpha and Delta as well as the variant of interest (VOI) Lambda only caused mild resistance. By generating a group of mutant viruses carrying single or combination mutations, we verified that K417N and N501Y substitutions in RBD critically determined the high resistance phenotype of VOCs. Furthermore, a large panel of 85 pseudoviruses with naturally occurring RBD point-mutations were generated and applied to LCB1, which identified that E406Q, K417N, and L455F conferred high-levels of resistance, when Y505W caused a ∼6-fold resistance fold-change. We also showed that the resistance mutations could greatly weaken the binding affinity of LCB1 to RBD and thus attenuated its blocking capacity on the interaction between RBD and the cell receptor ACE2. In conclusion, our data have provided crucial information for understanding the mechanism of SARS-CoV-2 resistance to LCB1 and will guide the design strategy of novel LCB1-based antivirals against divergent VOCs and evolutionary mutants.

4.
Antiviral Res ; 208: 105445, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2068667

ABSTRACT

The emergence and rapid spreading of SARS-CoV-2 variants of concern (VOCs) have posed a great challenge to the efficacy of vaccines and therapeutic antibodies, calling for antivirals that can overcome viral evasion. We recently reported that SARS-CoV-2 fusion-inhibitory lipopeptides, IPB02V3 and IPB24, possessed the potent activities against divergent VOCs, including Alpha, Beta, Gamma, Delta, and the initial Omicron strain (B.1.1.529); however, multiple Omicron sublineages have emerged and BA.4/5 is now becoming predominant globally. In this study, we focused on characterizing the functionality of the spike (S) proteins derived from Omicron sublineages and their susceptibility to the inhibition of IPB02V3 and IPB24. We first found that the S proteins of BA.2, BA.2.12.1, BA.3, and BA.4/5 exhibited significantly increased cell fusion capacities compared to BA.1, whereas the pseudoviruses of BA.2.12.1, BA.3, and BA.4/5 had significantly increased infectivity relative to BA.1 or BA.2. Next, we verified that IPB02V3 and IPB24 also maintained their very high potent activities in inhibiting diverse Omicron sublineages, even with enhanced potencies relative to the inhibition on ancestral virus. Moreover, we demonstrated that evolved Omicron mutations in the inhibitor-binding heptad repeat 1 (HR1) site could impair the S protein-driven cell fusogenicity and infectivity, but none of single or combined mutations affected the antiviral activity of IPB02V3 and IPB24. Therefore, we believe that viral fusion inhibitors possess high potential to be developed as effective drugs for fighting SARS-CoV-2 variants including diverse Omicron sublineages.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Lipopeptides/pharmacology , Antiviral Agents/pharmacology , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
5.
Emerg Microbes Infect ; 11(1): 1819-1827, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1915486

ABSTRACT

The emergence of SARS-CoV-2 Omicron and other variants of concern (VOCs) has brought huge challenges to control the COVID-19 pandemic, calling for urgent development of effective vaccines and therapeutic drugs. In this study, we focused on characterizing the impacts of divergent VOCs on the antiviral activity of lipopeptide-based fusion inhibitors that we previously developed. First, we found that pseudoviruses bearing the S proteins of five VOCs (Alpha, Beta, Gamma, Delta, and Omicron) and one variant of interest (Lambda) exhibited greatly decreased infectivity relative to the wild-type (WT) strain or single D614G mutant, especially the Omicron pseudovirus. Differently, the most of variants exhibited an S protein with significantly enhanced cell fusion activity, whereas the S protein of Omicron still mediated decreased cell-cell fusion. Next, we verified that two lipopeptide-based fusion inhibitors, IPB02V3 and IPB24, maintained the highly potent activities in inhibiting various S proteins-driven cell fusion and pseudovirus infection. Surprisingly, both IPB02V3 and IPB24 lipopeptides displayed greatly increased potencies against the infection of authentic Omicron strain relative to the WT virus. The results suggest that Omicron variant evolves with a reduced cell fusion capacity and is more sensitive to the inhibition of fusion-inhibitory lipopeptides; thus, IPB02V3 and IPB24 can be further developed as potent, broad-spectrum antivirals for combating Omicron and the potential future outbreak of other emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Anti-Retroviral Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Lipopeptides/pharmacology , Pandemics/prevention & control , SARS-CoV-2/genetics , Virus Internalization
6.
Cell Mol Immunol ; 18(12): 2588-2608, 2021 12.
Article in English | MEDLINE | ID: covidwho-1500456

ABSTRACT

Since severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific T cells have been found to play essential roles in host immune protection and pathology in patients with coronavirus disease 2019 (COVID-19), this study focused on the functional validation of T cell epitopes and the development of vaccines that induce specific T cell responses. A total of 120 CD8+ T cell epitopes from the E, M, N, S, and RdRp proteins were functionally validated. Among these, 110, 15, 6, 14, and 12 epitopes were highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively; in addition, four epitopes from the S protein displayed one amino acid that was distinct from the current SARS-CoV-2 variants. Then, 31 epitopes restricted by the HLA-A2 molecule were used to generate peptide cocktail vaccines in combination with Poly(I:C), R848 or poly (lactic-co-glycolic acid) nanoparticles, and these vaccines elicited robust and specific CD8+ T cell responses in HLA-A2/DR1 transgenic mice as well as wild-type mice. In contrast to previous research, this study established a modified DC-peptide-PBL cell coculture system using healthy donor PBMCs to validate the in silico predicted epitopes, provided an epitope library restricted by nine of the most prevalent HLA-A allotypes covering broad Asian populations, and identified the HLA-A restrictions of these validated epitopes using competitive peptide binding experiments with HMy2.CIR cell lines expressing the indicated HLA-A allotype, which initially confirmed the in vivo feasibility of 9- or 10-mer peptide cocktail vaccines against SARS-CoV-2. These data will facilitate the design and development of vaccines that induce antiviral CD8+ T cell responses in COVID-19 patients.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Animals , Cell Line , Drug Evaluation, Preclinical , Female , HLA-A2 Antigen/immunology , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptide Library , Vaccine Development
8.
Emerg Microbes Infect ; 10(1): 1227-1240, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1246665

ABSTRACT

The ongoing pandemic of COVID-19, caused by SARS-CoV-2, has severely impacted the global public health and socio-economic stability, calling for effective vaccines and therapeutics. In this study, we continued our efforts to develop more efficient SARS-CoV-2 fusion inhibitors and achieved significant findings. First, we found that the membrane-proximal external region (MPER) sequence of SARS-CoV-2 spike fusion protein plays a critical role in viral infectivity and can serve as an ideal template for design of fusion-inhibitory peptides. Second, a panel of novel lipopeptides was generated with greatly improved activity in inhibiting SARS-CoV-2 fusion and infection. Third, we showed that the new inhibitors maintained the potent inhibitory activity against emerging SARS-CoV-2 variants, including those with the major mutations of the B.1.1.7 and B.1.351 strains circulating in the United Kingdom and South Africa, respectively. Fourth, the new inhibitors also cross-inhibited other human CoVs, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Fifth, the structural properties of the new inhibitors were characterized by circular dichroism (CD) spectroscopy and crystallographic approach, which revealed the mechanisms underlying the high binding and inhibition. Combined, our studies provide important information for understanding the mechanism of SARS-CoV-2 fusion and a framework for the development of peptide therapeutics for the treatment of SARS-CoV-2 and other CoVs.


Subject(s)
Drug Design , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , SARS-CoV-2/drug effects , Virus Attachment/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Fusion , Cell Survival/drug effects , Chlorocebus aethiops , Communicable Diseases, Emerging/virology , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Protein Conformation , Vero Cells
9.
Emerg Microbes Infect ; 10(1): 810-821, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1180458

ABSTRACT

EK1 peptide is a membrane fusion inhibitor with broad-spectrum activity against human coronaviruses (CoVs). In the outbreak of COVID-19, we generated a lipopeptide EK1V1 by modifying EK1 with cholesterol, which exhibited significantly improved antiviral activity. In this study, we surprisingly found that EK1V1 also displayed potent cross-inhibitory activities against divergent HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. Consistently, the recently reported EK1 derivative EK1C4 and SARS-CoV-2 derived fusion inhibitor lipopeptides (IPB02 ∼ IPB09) also inhibited HIV-1 Env-mediated cell-cell fusion and infection efficiently. In the inhibition of a panel of HIV-1 mutants resistant to HIV-1 fusion inhibitors, EK1V1 and IPB02-based inhibitors exhibited significantly decreased or increased activities, suggesting the heptad repeat-1 region (HR1) of HIV-1 gp41 being their target. Furthermore, the sequence alignment and molecular docking analyses verified the target site and revealed the mechanism underlying the resistance. Combined, we conclude that this serendipitous discovery provides a proof-of-concept for a common mechanism of viral fusion and critical information for the development of broad-spectrum antivirals.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , HIV-1/drug effects , HIV-2/drug effects , Simian Immunodeficiency Virus/drug effects , Virus Internalization/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/isolation & purification , Dose-Response Relationship, Drug , HIV Fusion Inhibitors/isolation & purification , HIV Fusion Inhibitors/pharmacology , Humans , Lipopeptides/isolation & purification , Lipopeptides/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/isolation & purification , Peptide Fragments/pharmacology , SARS-CoV-2/drug effects , Structure-Activity Relationship , Virus Replication/drug effects
10.
Sci Adv ; 6(45)2020 11.
Article in English | MEDLINE | ID: covidwho-842149

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus genetically close to SARS-CoV. To investigate the effects of previous SARS-CoV infection on the ability to recognize and neutralize SARS-CoV-2, we analyzed 20 convalescent serum samples collected from individuals infected with SARS-CoV during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor binding domain (RBD) of SARS-CoV; cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2; and neutralized both SARS-CoV and SARS-CoV-2 S protein-driven infections. Analysis of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV verified cross-reactive neutralization against SARS-CoV-2. A SARS-CoV-derived RBD from palm civets elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing strategies for development of universal vaccines against emerging coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunization/methods , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/virology , COVID-19 Vaccines/immunology , Cross Reactions , Follow-Up Studies , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Neutralization Tests , Rabbits , Severe Acute Respiratory Syndrome/blood , Severe Acute Respiratory Syndrome/virology
11.
Science ; 369(6511): 1603-1607, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-690532

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has prioritized the development of small-animal models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We adapted a clinical isolate of SARS-CoV-2 by serial passaging in the respiratory tract of aged BALB/c mice. The resulting mouse-adapted strain at passage 6 (called MASCp6) showed increased infectivity in mouse lung and led to interstitial pneumonia and inflammatory responses in both young and aged mice after intranasal inoculation. Deep sequencing revealed a panel of adaptive mutations potentially associated with the increased virulence. In particular, the N501Y mutation is located at the receptor binding domain (RBD) of the spike protein. The protective efficacy of a recombinant RBD vaccine candidate was validated by using this model. Thus, this mouse-adapted strain and associated challenge model should be of value in evaluating vaccines and antivirals against SARS-CoV-2.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Disease Models, Animal , Mice , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Administration, Intranasal , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Female , High-Throughput Nucleotide Sequencing , Humans , Immunogenicity, Vaccine , Lung/virology , Lung Diseases, Interstitial/virology , Mice, Inbred BALB C , Mice, Transgenic , Mutation , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Virulence/genetics
12.
Antiviral Res ; 179: 104820, 2020 07.
Article in English | MEDLINE | ID: covidwho-245354

ABSTRACT

SARS-CoV-2-caused COVID-19 cases are growing globally, calling for developing effective therapeutics to control the current pandemic. SARS-CoV-2 and SARS-CoV recognize angiotensin-converting enzyme 2 (ACE2) receptor via the receptor-binding domain (RBD). Here, we identified six SARS-CoV RBD-specific neutralizing monoclonal antibodies (nAbs) that cross-reacted with SARS-CoV-2 RBD, two of which, 18F3 and 7B11, neutralized SARS-CoV-2 infection. 18F3 recognized conserved epitopes on SARS-CoV and SARS-CoV-2 RBDs, whereas 7B11 recognized epitopes on SARS-CoV RBD not fully conserved in SARS-CoV-2 RBD. The 18F3-recognizing epitopes on RBD did not overlap with the ACE2-binding sites, whereas those recognized by 7B11 were close to the ACE2-binding sites, explaining why 7B11 could, but 18F3 could not, block SARS-CoV or SARS-CoV-2 RBD binding to ACE2 receptor. Our study provides an alternative approach to prevent SARS-CoV-2 infection using anti-SARS-CoV nAbs.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Betacoronavirus/genetics , Binding Sites , COVID-19 , Cross Reactions , Epitopes/immunology , HEK293 Cells , Humans , Neutralization Tests , Pandemics , Peptidyl-Dipeptidase A/immunology , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
13.
J Virol ; 94(14)2020 07 01.
Article in English | MEDLINE | ID: covidwho-197345

ABSTRACT

The 2019 coronavirus disease (COVID-19), caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed serious threats to global public health and economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we first verified that SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as a cell receptor and that its spike (S) protein mediates high membrane fusion activity. The heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased α-helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR2) site, than the HR1 sequence in S2 of severe acute respiratory syndrome coronavirus (SARS-CoV). Then, we designed an HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly potent activities in inhibiting SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus transduction. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the structure-activity relationship (SAR) of IPB02 was characterized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the results presented here provide important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step.IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. The S protein of coronaviruses mediates viral receptor binding and membrane fusion, thus being considered a critical target for antivirals. Herein, we report that the SARS-CoV-2 S protein has evolved a high level of activity to mediate cell-cell fusion, significantly differing from the S protein of SARS-CoV that emerged previously. The HR1 sequence in the fusion protein of SARS-CoV-2 adopts a much higher helical stability than the HR1 sequence in the fusion protein of SARS-CoV and can interact with the HR2 site to form a six-helical bundle structure more efficiently, underlying the mechanism of the enhanced fusion capacity. Also, importantly, the design of membrane fusion inhibitors with high potencies against both SARS-CoV-2 and SARS-CoV has provided potential arsenals to combat the pandemic and tools to exploit the fusion mechanism.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Lipopeptides/pharmacology , Membrane Fusion/drug effects , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Betacoronavirus/physiology , COVID-19 , Drug Design , HEK293 Cells , Humans , Lipopeptides/chemistry , Membrane Glycoproteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL